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Abstract. We compare two widely used approaches to the description of hadron properties: QCD sum
rules and constituent quark models. Making use of the dispersion formulation of the quark model, we
show that both approaches lead to similar spectral representations for the hadron observables with the
important difference that the quark model is based on Feynman diagrams with massive quarks, whereas
QCD sum rules are based on the same Feynman diagrams for current quarks with the additional condensate
contributions for light quarks and gluons. We give arguments for the similarity of the smearing function
in the sum rule case and the hadron wave function of the quark model. Analyzing the sum rule for the
leptonic decay constant of the heavy pseudoscalar meson containing a light u or s quark, we find that
the quark condensates at the chiral symmetry-breaking scale µχ � 1 GeV, 〈ūu〉 = −(230 ± 15 MeV)3

and 〈s̄s〉 = −(220 ± 15 MeV)3 correspond to constituent quark masses of mu � 220 MeV and ms �
350 MeV, respectively. We also obtain the running of the quark-model parameters above the chiral scale
µχ. The observed correspondence between constituent quark models and QCD sum rules allows for a deeper
understanding of both methods and their parameters. It also provides a QCD basis for constituent quark
models, extending their applicability above the scale of chiral symmetry breaking.

1 Introduction

There are several pieces of evidence that the static proper-
ties of hadrons and their characteristics in processes with
momentum transfers not larger than a few GeV may be
well described treating the hadron as a relativistic few-
body composite system of effective particles: the con-
stituent quarks. This evidence comes from several sources.
Among them are the following.
(i) Hadron spectroscopy, where mesons and baryons spec-
tra may be well described in the relativistic constituent
quark model [1];
(ii) high-energy hadron–hadron and hadron–nucleus scat-
tering at small and intermediate momentum transfers,
where we have momentum distributions of secondary par-
ticles; this is in fact a scattering of the three-quark and
two-quark bound states, well described assuming that
mesons and nucleons are bound states of two and three
constituent quarks, respectively [2];
(iii) photon–hadron scattering at small momentum trans-
fers, where the observables speak in favor of the presence
of a few extended objects inside hadrons [3];
(iv) exclusive processes at small and intermediate momen-
tum transfers, where the constituent quark picture has
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been successfully applied to the calculation of elastic and
transition form factors. Indeed, various models based on
the notion of constituent quarks can be found in the lit-
erature, for instance the dispersion approach [4,5], the
quasipotential approach [6], and light-front [7,8], instant-
form [9] and point-form [10] quark models. For more de-
tails we refer to the review in [11]. The constituent quark
masses are the parameters to be adjusted by describing
the data. The typical values of the constituent masses
are mu = md � 220 ÷ 300 MeV, ms � 350 ÷ 450 MeV,
mc � 1.4 ÷ 1.6 GeV and mb � 4.8 ÷ 5.0 GeV.

The many successes of the constituent quark model
to describe the data definitely prompt us to accept that
this approach provides a relevant description of the non-
perturbative QCD physics at low and intermediate momen-
tum transfers. However, on one hand a rigorous derivation
of the quark model from the QCD Lagrangian is hard to
establish. On the other hand a relationship between QCD
Lagrangian and hadron physics is provided by QCD sum
rules. Thus it is reasonable to look for a correspondence
between quark models and sum rules in order to connect
the former to QCD in this way.

In this paper we demonstrate such a correspondence
between sum rules and quark models making use of the
dispersion formulation for the latter [12]. This correspon-
dence not only provides a QCD basis for quark-model
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calculations but also helps in obtaining a better under-
standing of the different versions of QCD sum rules and
of the parameters which a priori have no clear physical
meaning within QCD sum rules. Moreover, it allows us to
understand the proper running of the constituent quark-
model parameters above the chiral symmetry-breaking
scale µχ � 1 GeV, opening the possibility to apply con-
stituent quark models above this scale in a controlled way.

1.1 QCD sum rules

The method of QCD sum rules [13] is based on the follow-
ing theoretical concepts: a complicated structure of the
physical QCD vacuum, operator product expansion and
quark–hadron duality. The first concept states that the
physical QCD vacuum is different from the perturbative
QCD vacuum, and properties of the former may be de-
scribed in terms of the condensates, i.e. non-vanishing am-
plitudes of local gauge-invariant operators over the phys-
ical vacuum. Perturbative QCD calculations can still be
applied far from hadronic thresholds, but require modifi-
cations: non-perturbative contributions given by the con-
densates appear as power corrections to the usual per-
turbative expressions. These proper modifications of the
perturbation theory may be obtained using the operator
product expansion.

The central object considered within the QCD sum
rule method is the correlator of the quark currents over the
physical vacuum. One obtains spectral representations for
this correlator by two different means: within the modified
QCD perturbation theory including condensates, and us-
ing hadron saturation. Local quark–hadron duality states
that both representations for the spectral density should
be equal to each other after a proper smearing (the same
for the QCD part and the hadronic part) is applied. The
two smeared representations for the spectral density give
the two sides of the QCD sum rule.

Sum rules as a technical tool to obtain the resonance
properties from QCD is based on attempting to choose
the smearing function such that a single resonance domi-
nates the hadronic part of the sum rule, and at the same
time only a few condensates of the lowest dimension are
essential on the QCD side. In many cases it is possible
to find smearing functions which satisfy the above com-
petiting requirements [14]. Then one obtains the resonance
parameters, such as masses, decay constants, or form fac-
tors. For details we refer to the review papers in [15,16]
and references therein.

In practice, the application of this method leads to
the calculation of the spectral densities of the relevant
Feynman diagrams with current quarks and gluons, taking
the convolution of this spectral density with the smearing
function, and adding non-perturbative power corrections
described in terms of the condensates. Depending on the
choice of the smearing function one obtains various ver-
sions of the sum rules (moment, Borel, Gaussian, etc.).
The resulting sum rules contain physical parameters such
as quark masses and condensates, and parameters describ-
ing the details of the smearing procedure which may vary

from one observable to the other. They are fixed by re-
quiring the stability of the sum rule or from fits to the
data.

1.2 Constituent quarks and the dispersion approach

The dispersion approach [12] uses the constituent quarks
and is thus conceptually quite different. Nevertheless,
technically it is based on calculating the spectral densities
of the same diagrams as in the sum rules, but involving
the constituent quarks, and taking the convolution of these
spectral densities with the wave functions of the partici-
pating hadrons. All non-perturbative effects are assumed
to be taken into account by introducing the constituent
quarks and no other non-perturbative contributions are
added. One may treat the wave functions either as some
non-perturbative input and use simple parameterizations
for them, or use the relativistic wave functions obtained
from the solutions to an eigenvalue problem [8].

The central observation for comparing sum rules and
quark models is that the densities in the spectral represen-
tations are the same functions in both methods. The dif-
ferences come from the following sources: in quark models
one uses effective constituent quark masses and the wave
functions of hadrons; in sum rules one uses current quark
masses, smearing functions which may have no physical
meaning, and adds the contributions of condensates. The
spectral densities determine the main qualitative features
of the calculated hadron observables, such as their de-
pendence on the momentum transfer or scaling proper-
ties in the heavy-quark mass. On the quantitative side, if
both approaches give the correct description of the hadron
properties, the constituent masses in quark-model calcu-
lations should numerically reproduce the contribution of
the condensates in QCD sum rules.

We make this correspondence explicit by analyzing the
decay constant of the B meson, a pseudoscalar meson con-
taining heavy b and light ū quarks. We obtain the con-
stituent mass of the light quark from QCD sum rules in
the limit mb → ∞.

We argue that the above correspondence between sum
rules and quark model and the knowledge of the spectro-
scopic wave functions in the latter allow one to find the
optimal smearing function and to favor a specific version
of QCD sum rules depending on the hadron considered1.
For instance, for hadrons containing heavy quarks we give
arguments in favor of Gaussian sum rules compared to
Borel sum rules, while in the case of hadrons containing
light quarks only Borel sum rules appear to be favored.

The correspondence between constituent quark mod-
els and QCD itself (via the sum rules) can be pushed fur-
ther. Indeed the natural upper limit of applicability of
constituent quark models is the scale of chiral symmetry
breaking, µχ � 1 GeV. Below such a scale the constituent
mass may be approximated by a constant fixed mainly

1 Notice that the idea of a similarity of the Borel wave func-
tion of QCD sum rules and the light-cone wave function of a
hadron in terms of current quarks was discussed in [17].
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by spectroscopic data on hadron masses. Above the chiral
scale a running of the constituent mass is strongly ex-
pected. A similar situation holds as well for the hadron
wave functions. The correspondence we found between
constituent quark models and QCD sum rules allows us
to find out quantitatively the running of both the con-
stituent mass and average momentum inside the hadron
just by imposing the appropriate QCD scale dependence
of the quark condensate.

This paper is organized as follows: in Sect. 2 the main
formulas for the pseudoscalar B meson in the dispersion
approach are recalled. In Sect. 3 we consider a sum rule for
the decay constant fB and its relationship to the quark
model, and obtain the constituent quark mass. We also
discuss physical motivations for the smearing function. In
Sect. 4 we address and solve quantitatively the relation be-
tween the QCD running of the quark condensate and the
running of both the constituent mass and average momen-
tum inside the hadron. Finally we summarize our results
in Sect. 5.

2 Dispersion approach
based on the constituent quark picture

We present here the main formulas of the dispersion ap-
proach [12] necessary for our discussion. The relativistic
wave function of the B meson consisting of b and ū quarks
with masses mb and mu, is normalized as

1 =

∞∫
(mb+mu)2

ds |ψ(s)|2 ρ(s,m2
b ,m

2
u), (1)

where ρ(s) is the spectral density of the Feynman loop
graph with the iγ5 Dirac structures in the vertices (see
Fig. 1), given explicitly by

a

b

Fig. 1. The cut Feynman diagrams for calculating the spectral
density ρ(s) of the correlator (6). The dotted line denotes the
cut. a The perturbative loop with b quark and the current u
quark and the contribution of the quark condensate. b The
loop diagram containing the b quark and the constituent u
quark with the mass mu

ρ(s,m2
b ,m

2
u)

= − Nc

8π3

∫
dkudkbδ(m2

b − k2
b )δ(m2

u − k2
u)δ(p̃− kb − ku)

× Sp
(
(mb + k̂b)iγ5(mu − k̂u)iγ5

)
=

Nc

8π2

λ1/2(s,m2
b ,m

2
u)

s

(
s− (mb −mu)2

)
×θ (

s− (mb +mu)2
)
. (2)

Here s = p̃2 and λ(s,m2
b ,m

2
u) ≡ (s−m2

b −m2
u)2 −4m2

bm
2
u.

The normalization condition (1) corresponds to the nor-
malization of the charged form factor of the meson at
q2 = 0.

The elastic form factor describing the interaction of
the b quark with an external vector field is defined as

〈B(p′)|b̄γµb|B(p)〉 = (p+ p′)µF (q2), (3)

with p− p′ = q. For q2 < 0 one finds

F (q2) =
∫

dsds′ψ(s)ψ(s′)∆V (s′, s, q2|m2
b ,m

2
b ,m

2
u), (4)

where ∆V (s′, s, q2|m2
b ,m

2
b ,m

2
u) is the double spectral den-

sity of the triangle diagram, whose explicit expression can
be found in [12]. An important property of the spectral
densities is the relation

∆V (s′, s, q2|m2
b ,m

2
b ,m

2
u) → δ(s− s′)ρ(s,m2

b ,m
2
u), (5)

valid for q2 → 0. For a given wave function ψ(s) (4) allows
us to calculate the form factor for q2 ≤ 0. The relation (5)
guarantees that F (q2 = 0) = 1.

3 QCD sum rules
and the constituent quark mass

We now turn to the calculation of resonance observables
in QCD sum rules and start with the decay constant fB .
The central object in this case is the correlator of two
pseudoscalar currents

i
∫

dx e−iqx〈vac|T{b̄(x)γ5u(x)ū(0)γ5b(0)}|vac〉. (6)

Here |vac〉 denotes the physical QCD vacuum which differs
from the perturbative QCD vacuum. The physical QCD
vacuum is characterized by non-vanishing expectation val-
ues of gauge-invariant operators. These expectation val-
ues vanish in the perturbation theory (i.e. when averaging
over the perturbative vacuum state). One can write the
correlator (6) as the dispersion representation in q2 and
calculate the spectral density of this representation us-
ing either the language of hadronic intermediate states or
QCD intermediate states. Clearly the two spectral den-
sities look quite different when compared point-by-point.
The local quark–hadron duality states that both spectral
densities are still equal to each other after a proper smear-
ing is applied to both of them. For more details we refer to
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[15]. The perturbative part of the QCD spectral density
contains the loop diagram and the radiative corrections
to it. The non-perturbative part of the QCD spectral den-
sity contains contributions of the condensates. It is known
that the radiative corrections play a role for obtaining re-
alistic predictions (see [18,19] for details and references).
However, since radiative corrections are not essential for
the (non-perturbative) correspondence we are looking for,
we postpone its discussion to the next section and keep
on the QCD side only the contribution of the loop dia-
gram and of the quark condensate. On the hadronic side
we keep only the B meson contribution and assume that
the hadron continuum may be suppressed or effectively
taken into account by the choice of the smearing function.
The resulting sum rule takes the form

f2
BM

4
B

(mb +mu)2
H(M2

B) (7)

=
∫

ds ρ(s,m2
b ,m

2
u)H(s) −mb〈q̄q〉H

(
(mb +mu)2

)
.

Here mu ≤ 10 MeV and mb are the short-distance quark
masses.2 H(s) is the function which provides the relevant
smearing of the spectral densities on both hadronic and
the QCD parts of the sum rule. Let us now rewrite the
sum rule (7) in the form

1 =
∫

ds ρ(s,m2
b ,m

2
u)Φ2(s) −mb〈q̄q〉Φ

(
(mb +mu)2

)
,

(8)

where we have defined Φ(s) as

Φ(s) =
mb +mu

fB M2
B

√
H(s)/H(M2

B). (9)

It is clear that as soon as we describe the B meson by
the pseudoscalar interpolating current b̄iγ5u, the combi-
nation (9) will appear for any observable as the result of
applying smearing in the corresponding channel. Usually,
the smearing functions are not assumed to be universal
and are allowed to vary from one observable to another.
Imagine however that there exists such a smearing func-
tion which turns out to be independent of the quantity
described by sum rules and is thus universal. Then up to
condensate contributions the expression (8) looks like the
normalization condition for this wave function. Compar-
ing (8) and (1) we may expect that the smearing function
Φ(s) and the wave function Ψ(s) are close to each other
and that the appearance of the constituent quark effec-
tively accounts for the contribution of the condensates.

To make this point clear let us consider a simple the-
ory without condensates but with confinement. A non-
relativistic potential model with a confining potential rep-
resents an example of such a theory. In this case the spec-
trum of states is discrete and one can use sum rules to

2 If radiative corrections are included in the spectral density
of (7), these quantities depend on the scheme and scale. Here-
after we imply the use of the MS renormalization scheme. The
inclusion of radiative corrections within the constituent quark
picture was discussed in [20].

calculate the bound-state parameters such as their masses
and decay constants [14] and to study quark–hadron dual-
ity [21]. One can also use sum rules to calculate the tran-
sition form factors. The merit of referring to the potential
model is that the exact solutions for the above quanti-
ties are known. So confronting the exact result with the
approximate results obtained by sum rules allows one to
understand the accuracy of the method and to motivate
the choice of the smearing functions. For the resonance
masses and the decay constants this was done in [14]. To
understand what happens for the form factors, let us study
the form factor describing the transition from the state i
to the state j, Fij(q2). The corresponding expression is
known:

F exact
i→j (q2) =

∫
dkΨi(k2)Ψ∗

j

(
(k + q)2

)
. (10)

Here Ψn(k2) is the wave function of the state n obtained
by solving the Schrödinger equation. Equation (10) can be
written in the form of a double dispersion integral

F exact
i→j (q2) (11)

=
∫

dzdz′Ψi(z)Ψ∗
j (z′)∆NR(z, z′,q2|m2),

where ∆NR(z, z′,q2|m2) is the double spectral density of
the triangle diagram of the non-relativistic field theory cal-
culated using the non-relativistic Green functions of free
quarks [2]. Since condensates are absent in this theory, the
application of sum rules would lead to a similar expression:

F SR
i→j(q

2) (12)

=
∫

dzΦi(z)dz′Φ∗
j (z

′)∆NR(z, z′,q2|m2),

where Φn(z) is the smearing function for the state n.
Choosing the smearing function Φn(z) equal to the exact
function Ψn(z) leads to the exact form factor. The same ar-
gument applies to other characteristics of the resonances.
In this case the existence of the universal smearing func-
tion is obvious.

The QCD situation is different and more complicated.
There are condensates, so one would not expect the uni-
versality of the smearing function to be exact. Never-
theless, assuming (and testing) approximate universality
may give a hint for choosing the relevant smearing func-
tion. To be more precise, let us assume the existence of
the function Φ(s, m̃2

b , m̃
2
u) with Ψ(s) = Φ(s,m2

b ,m
2
u) and

Φ(s) = Φ(s,m2
b ,m

2
u). Then combining (1) and (8) gives

the relation∫
dsρ(s,m2

b ,m
2
u)Φ2(s,m2

b ,m
2
u)

=
∫

dsρ(s,m2
b ,m

2
u)Φ2(s,m2

b ,m
2
u)

−mb〈q̄q〉Φ2 (
(mb +mu)2,m2

b ,m
2
u

)
. (13)

If the condensate contribution is negligible, the con-
stituent quark mass obtained from this equation is equal



D. Melikhov, S.Simula: Correspondence between QCD sum rules and constituent quark models 441

to the current quark mass. If condensates give a large con-
tribution, a priori it is not guaranteed that the solution
for mu exists at all. We shall see that for realistic val-
ues of the quark condensate the solution does exist and
gives the value for the constituent quark mu (or ms) in
the “expected” range.

3.1 The optimal smearing function

In view of the argument from the potential model dis-
cussed above, we may expect the existence of an “opti-
mal” smearing function which is close to the wave func-
tion of the constituent quark model. In many applications
of quark models the simple Ansatz

Ψ(s) � e−k2/2β2
, k = λ1/2(s,m2

b ,m
2
u)/2

√
s, (14)

with β ∼ ΛQCD, was found to give a good approximation
to the exact solution of the spectral problem for ground-
state mesons and to lead to a good description of the data.
Thus we choose the trial function Φ(s,m2

b ,m
2
u) as follows:

Φ(s,m2
b ,m

2
u) =

mb +mu

fBM2
B

e−k2(s,m2
b ,m2

u)/2β2
B . (15)

Replacing m → m gives the smearing function Φ(s)

Φ(s) =
mb +mu

fBM2
B

e−k2(s,m2
b ,m2

u)/2β2
B

� mb

fBM2
B

e−(s−M2
0 )2/4m2

bβ2
, (16)

where M0 � mb and in the last equation we used m2
b 


β2. This relation prompts one to use the Gaussian smear-
ing function for calculating fB in (8) (i.e. to use the
Gaussian sum rule and not the Borel one), and to place
the center of the Gaussian near m2

b . Moreover, choosing
M0 = mb improves the suppression of higher-dimension
condensates: since Φ(s) has in this case a maximum at
s = m2

b , the contribution of the dimension-4 conden-
sate proportional to δ′(s−m2

b) vanishes, and thus higher-
dimension condensates are suppressed by two powers of
the inverse heavy-quark mass instead of one power as it
occurs in Borel sum rules. So neglecting higher order con-
densates looks quite safe. In practice one can allow the
difference M0 −mb to take a small non-zero value.

Before closing this subsection notice that in the case
of mesons consisting of light quarks only one has k2 � 4s,
so that for such hadrons (15) favors the use of Borel sum
rules.

3.2 The constituent quark mass
and the quark condensate

Using the Ansatz (15) we can rewrite (13) as follows:

mb〈q̄q〉 =
∫

ds ρ(s,m2
b ,m

2
u) e−k2(s,m2

b ,m2
u)/β2

B

−
∫

ds ρ(s,m2
b ,m

2
u) e−k2(s,m2

b ,m2
u)/β2

B . (17)

This relations gives a connection between the quark mass,
the constituent mass and the condensate, but involves also
mb, mb, and the parameter βB of the smearing function.
To get rid of complications related to the presence of mb

we go to the limit mb → ∞. This procedure requires how-
ever some care: the spectral density ρ(s,m2

b ,m
2
u) involves

radiative corrections which so far have not been included
into the consideration. As soon as the radiative corrections
are included, it becomes crucial which precise definition of
the heavy-quark mass is used. As known from the litera-
ture radiative corrections to the spectral density are big
(almost 100%) for the pole heavy-quark mass [18], but
they are less than 10% if one works with the MS run-
ning mass [19]. Having in mind the small size of radiative
corrections in terms of the mb, we require that the limit
mb → ∞ is taken such that the ratio of the constituent
mb to the MS mass mb goes to unity,

mb/mb → 1. (18)

Then the radiative corrections to (17) may be safely omit-
ted to the accuracy we are interested in. Changing the
integration variable, in the limit mb → ∞ (17) takes the
form

〈q̄q〉 (19)

=
Nc

π2

∫ ∞

0
dk k2 e−k2/β2

∞

{
mu√
m2

u + k2
− mu√

m2
u + k2

}
.

Equation (19) is the first central result of this paper. The
quark condensate and the current quark mass mu de-
pend on the scale, thus requiring a scale dependence of
the quark-model parameters β∞ and mu. We shall discuss
this dependence in the next section, and now we analyze
the relation (19) at the chiral symmetry-breaking scale
µχ � 1 GeV.

First of all we note that below µχ the quark-model
parameters mu(µ) and β∞(µ) can be reasonably taken
as constant values fixed by the specific potential model
adopted. From the analysis of properties of the Qq̄ mesons
in [5] one expects the value β∞ = 0.6 ÷ 0.7 GeV in the
heavy-quark limit. Neglecting the current mass of the light
quark in numerical estimates, we find that the constituent
quark mass mu = 220 MeV (obtained from the description
of the meson transition form factors in [5] and prompted
by the analysis of the meson mass spectrum in [24]) cor-
responds to the condensate 〈q̄q〉 = −(230 ± 15 MeV)3.
Interestingly, the condensate value does not vary much
for mu in the range 200 ÷ 350 MeV. For instance for
mu = 350 MeV, 〈q̄q〉 = −(260 ± 15 MeV)3. The error in
this estimate results from the variation of β∞ in the range
0.6 ÷ 0.7 GeV.

The obtained condensate is negative in agreement with
the Gell-Mann–Oakes–Renner relation [22] and compares
favorably with the estimates 〈q̄q〉(1 GeV) = −(242 ±
15 MeV)3 [23].

A similar analysis can be done for the s quark. The pa-
rameter βs

∞ for the pseudoscalar Qs̄ meson was found to



442 D. Melikhov, S.Simula: Correspondence between QCD sum rules and constituent quark models

be only a few percent bigger than β∞ [5,24]; the strange-
quark condensate is 〈s̄s〉/〈q̄q〉 = 0.8 ± 0.3 [23]. Then al-
lowing the range of values 〈s̄s〉 = −(220 ± 20 MeV)3,
βs

∞ = 0.6 ÷ 0.7 GeV and ms = 110 ± 10 MeV leads to
a constituent mass of the strange quark in the range
ms = 350 ± 30 MeV.

4 Running of the constituent quark mass
and average momentum

Requiring the relation (19) to hold at any scale above µχ

leads to the scale dependence of the quark-model param-
eters β∞ and mu.

In QCD the current quark mass and the quark conden-
sate are multiplicatively renormalized in such a way that
their product is renormalization group invariant (RGI),
namely

mu(µ) = m̂u Zm(µ), (20)

〈q̄q〉(µ) = 〈̂q̄q〉 ZS(µ), (21)

where ZS(µ) = 1/Zm(µ) at any renormalization scale µ,
while m̂u and 〈̂q̄q〉 are RGI quantities. Within the MS
scheme, at next-to-leading order (NLO) accuracy in the
strong coupling constant αs(µ) one explicitly has [25]

Zm(µ) =
(
αs(µ)

π

)4/β0
[
1 +

(
4γ1

β0
− β1

β2
0

)
αs(µ)

π

]
, (22)

where β0 = 11 − 2 nf/3, β1 = 102 − 38 nf/3 and γ1 =
(101 − 10 nf/3)/24.

4.1 Running at high scales

Above the chiral scale the two quark-model parameters
β∞ and mu run with the scale µ and their evolution is
expected to be coupled in order to fulfill (19) and (21).
Qualitatively, the constituent massmu decreases when the
scale µ increases, while the parameter β∞, which governs
the average momentum of the constituent quark inside
the hadron, increases with the scale µ. Thus, above a suf-
ficiently high scale µ0 (> µχ) the value of the parameter
β∞(µ) becomes much larger than the value of the mass
mu(µ), so that in the RHS of (19) we can neglect both
m2

u and m2
u with respect to k2. This leads to a simple

expression for the quark condensate, namely

〈q̄q〉(µ)−−−→
µ≥µ0

Nc

2π2 β2
∞(µ) [mu(µ) −mu(µ)] . (23)

We have now to impose that the RHS of the above equa-
tion runs with the renormalization scale as in (21), using
(20) for the scale dependence of the current quark mass.
In general there is no unique solution. However, if we re-
quire that for µ ≥ µ0 the evolutions of mu(µ) and β∞(µ)
are decoupled, then there is a unique solution provided by

mu(µ) −−−→
µ≥µ0

m̂u Zm(µ),

β∞(µ) −−−→
µ≥µ0

β̂∞/Zm(µ), (24)

where m̂u and β̂∞ are RGI quantities satisfying the re-
lation 〈̂q̄q〉 = (Nc/2π2) β̂2

∞ (m̂u − m̂u). Note that the
assumption of the same running for both the constituent
and the current quark mass is quite natural and very plau-
sible.

4.2 Running at intermediate scales µχ ≤ µ ≤ µ0

For µχ ≤ µ ≤ µ0 the scale dependences of mu(µ) and
β∞(µ) are coupled in order to fulfill (19) and (21). Re-
quiring that the constituent mass has the same scale de-
pendence as the current mass for µ ≥ µχ,

mu(µ) = mu(µχ) Zm(µ)/Zm(µχ), (25)

we obtain

β∞(µ) = β∞(µχ) Zβ(µχ)/Zβ(µ), (26)

where mu(µχ) and β∞(µχ) are respectively the values
of mu and β∞ up to the chiral scale µχ. From (24)
one has that Zβ(µ) � Zm(µ) for µ ≥ µ0, while for

Fig. 2. The renormalization constants Zm(µ) = Zm(µ)
(dashed lines) and Zβ(µ) (solid lines), divided by Zm(µ = µχ =
1 GeV), versus the renormalization scale µ. For the running of
Zm(µ) we have considered (22) with αs(MZ) = 0.118. The
values of the constant Zβ(µ) are obtained as described in the
text
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µχ ≤ µ ≤ µ0 the value of Zβ(µ) can be obtained nu-
merically from (19) making use of (21). In Fig. 2 we
report Zm(µ) = Zm(µ) given by (22) and Zβ(µ) ob-
tained from (19) with mu = 0, mu(1 GeV) = 250 MeV
and 〈q̄q〉(1 GeV) = −(242 MeV)3 for u and d quark,
and ms(1 GeV) = 110 MeV, ms(1 GeV) = 350 MeV and
〈s̄s〉(1 GeV) = −(220 MeV)3 for the s quark. Clearly, the
scale dependence of β∞(µ) is quite close to the one of the
mass in case of the light constituent u- and d quark, while
larger differences appear only around the chiral scale µχ

in case of the constituent s quark.

5 Conclusions and outlook

We have considered the relationship between QCD sum
rules and the constituent quark model formulated in the
form of spectral representations. Our main results are as
follws.
(1) We compared the normalization condition for the
wave function of a heavy-light pseudoscalar meson in con-
stituent quark model with the QCD sum rule for the de-
cay constant of the same pseudoscalar meson in QCD. We
noticed that if one uses a specific version of QCD sum
rules, in which the duality smearing function is close to
the hadron wave function of the quark model, then effects
related to condensates in QCD may be described in terms
of the appearance of effective constituent quark masses.
(2) We gave arguments in favor of choosing the smear-
ing functions of QCD sum rules close to the hadron wave
functions of the constituent quark model. Applying sum
rules for bound-state transition form factors in a confining
potential model (a theory with confinement but without
condensates), we have seen that the choice of the smearing
functions equal to the bound-state wave functions leads to
the exact result for the form factors. Although the conden-
sates in QCD violate this exact relation, the approximate
similarity of the smearing function with the wave function
seems to remain a useful concept.

The knowledge of the hadron wave functions of the
constituent quark model may then suggest the “optimal”
choice of the smearing wave function of QCD sum rules,
and thus the specific version of sum rules (Borel or Gaus-
sian) to be used. For instance, the quark model wave func-
tions speak in favor of using the Gaussian sum rules for
B mesons and the Borel sum rules for mesons containing
light quarks only.
(3) The similarity of the smearing and the wave functions
allows us to obtain the relation between the quark con-
densate and the constituent quark mass. The constituent
mass of the light quark mu = 220 MeV corresponds to
the quark condensate 〈q̄q〉 = −(230 ± 15 MeV)3 in a
good agreement with the expected value of this quantity.
Similarly a constituent mass of the strange quark equal
to ms = 350 MeV corresponds to a current quark mass
ms = 110±10 MeV and a strange condensate in the range
〈s̄s〉 = −(220 ± 15 MeV)3.
(4) We addressed the problem of the scale dependence
of our correspondence between constituent quark models

and QCD sum rules. By imposing the known QCD run-
ning of the quark condensate we found explicitly the scale-
dependence of the constituent quark mass and the average
momentum of the quark inside the hadron. Our findings
open the possibility to apply the constituent quark model
above the scale of chiral symmetry breaking in a controlled
way.

The observed correspondence between QCD sum rules
and constituent quark models may have two important
applications. First, it allows us to understand the param-
eters of the constituent quark model on the QCD basis
and it also opens the possibility to apply such a model
beyond the scale of chiral symmetry breaking. Second, it
provides a physical motivation and control over the smear-
ing functions in QCD sum rules. In spite of the obvious
successes of the constituent quark model mentioned in the
beginning of this paper, it is not easy to provide a reliable
error estimate for its predictions. The context of QCD sum
rules can give a firm theoretical basis for the quark model
picture of hadrons.

The most interesting problem where the formulated
ideas may be applied and tested is the physics of form
factors. This work is in progress.
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